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The anomalies discussed here can arise when using non-parametric trend tests, as implemented for
example in WQStat Plus (IDT Ltd. 1998) and in its predecessors. These tests are now being used on
New Zealand environmental data at national scale (Smith et al. 1996) and at regional scale (e.g.,
Stansfield 1997; Vant & Wilson 1998), so an awareness of these issues and the appropriate remedies
should prove useful.

The following is adapted from material presented in McBride & Loftis (1994). The main points are
given in the following two sections (TWO ISSUES and SUMMARY). Technical details then follow.

TWO ISSUES
Results of the two-sided seasonal Kendall trend test and its associated seasonal Kendall slope
estimator (as described by Gilbert 1987:225–228 and implemented in the WQStat II and WQStat Plus
software, IDT 1998) can occasionally give one of two unexpected results:
(a) a non-zero slope estimate that cannot be significant (its apparent p-value is 100%, indicating

certainty that there is no trend);
(b) a zero slope estimate that is significant (i.e., its apparent p-value is very low).

SUMMARY
Case (a) arises whenever the test statistic is computed to be zero and the large sample approximation is
used to obtain its critical value (i.e., it is assumed that the test statistic follows the unit normal
distribution). This approximation is inappropriate when that statistic is zero. A simple way to resolve
the problem is to report the test's p-value as CEILING(p*), where p* is the largest p-value that can be
attained when the test statistic is non-zero and CEILING raises p* to the next (higher) integer.
Because p* is always less than 100% this procedure works well. For example, for trend analysis of
monthly sampling for 5 years we have p* = 94.4% and so the result should be reported as p < 95%.
For ten years of monthly sampling we have p* = 97.94% and so the result should be reported as  p <
98%.

Case (b) arises when there is disproportionately large number of ties (i.e., equal values). In such a case
the slope estimator may not be appropriate; it may be better to take the median of the remaining non-
zero slopes as the estimate (the estimate does not form part of the test; it is an adjacent calculation).

TECHNICAL DETAILS
Three questions arise when seeking reasons for results (a) and (b), and when proposing remedies.
Without loss of generality, their answers are well illustrated by taking the example of trend analysis
for n = 5 years of monthly data.

How can p = 100% for a two-sided seasonal Kendall test?
To test the null hypothesis that there was no trend in concentration of some variable (denoted by c)
over the five years the test procedure is:
1. Select a particular month (call it month i).
2. Compute the signs of all the possible differences in concentrations between years for that month

(cross-month differences are not considered). The resulting 10 differences are: sgn(ci2–ci1),
sgn(ci3–ci1), sgn(ci4–ci1), sgn(ci5–ci1), sgn(ci3–ci2), sgn(ci4–ci2), sgn(ci5–ci2), sgn(ci4–ci3), sgn(ci5–ci3),
sgn(ci5–ci4).

3. Replace sgn(x) by +l if the sign is positive or by –1 if it is negative, and by 0 if there is no
difference (i.e., there is a tie, so that x = 0). Then sum the 10 values and call that sum Si.



4. Compute the variance of Si from [n(n–1)(2n+5) – �tip(tip–1)(2tip+5)]/18, where tip is the number of
tied data in the pth tied group for the ith month, and the summation is over the number of tied
groups for that month.1

5. Sum the Si series over all months; i.e., S = ΣSi, for i = 1, 2,…, 12. (So S is the sum of 120 terms.)
6. Compute the variances of S from Var(S) = Σ[Var(Si)], for i = 1, 2,…, 12.
7. Compute the test static (ZsK) from the large sample normal approximation (with continuity

correction of one unit), i.e.,
ZsK = (S–1)/√[Var(S)] if S > 0 (1)
ZsK = 0 if S = 0 (2)
ZsK = (S+1)/√[Var(S)] if S < 0 (3)

8. Reject the null hypotheses if |ZsK| > Zα/2, where α is the chosen significance level and Zα/2 is the
value of the abscissa that cuts off an area = α/2 in the right tail of the unit normal distribution.

In our example, the lowest non-zero value of |ZsK| is 0.0707. This value occurs when there are no ties
and the number of terms of opposite sign differs by 2, so that S = ±2 and Var (S) = Σ(5x4x15/18) =
12x5x4x15/18 = 200. Equations 1 or 3 (whichever is appropriate) then give |ZsK| = 1/√200 = 0.0707.
The associated p-value is 94.36% (an algorithm for computing normal p-values is given in the last
section). Slightly larger values of the test statistic, and hence smaller p-values, are obtained if S = ±2
in the presence of ties [because then Var(S) < 200].

However there are a number of situations for which it is possible to obtain ZsK = 0 and hence, for a
two-sided test, p = 100%:
i. there are no ties and an equal number (60) of terms in the S series have opposite signs (so that

S = 0 and equation 2 applies);
ii. there is an even number of ties and an equal number (<60) of terms in the S series have

opposite signs (so that S = 0 and equation 2 applies);
iii. there is an odd number of ties and the remaining terms in the S series differ by 1 in their

numbers of opposite signs (so that S = 1 in equation 1 or S = –1 in equation 3, and the
numerator of the right-hand of the equations is zero).

Reporting p = 100% is untenable—in statistics nothing is certain. This wrong result arises because the
large sample approximation is not appropriate when ZsK = 0; there is a non-zero probability of getting
S = 0 or +1 from a finite sample. When the null is true, that probability can be computed, albeit
laboriously (see Hollander & Wolfe 1973, p. 190). A simple remedy in our example is to report p >
95%, because 95% is just greater than the highest p-value attainable for a non-zero test statistic
(94.36%), but is less than 100%. Note however that if we were analysing 10 years of monthly data
then the lowest non-zero value of the test statistic would be |ZsK| = 1/√1500 = 0.0258, with associated
p-value = 97.94%. The p-value corresponding to ZsK = 0 could then be reported as p > 98%.

How can the estimated trend slope be non-zero when the test statistic is zero?
Consider the seasonal Kendall slope estimate. It is the median of all possible slopes within each month
(i.e., no cross-month slopes contribute to the estimate). The procedure is:
1. Select a particular month (call it month i).
2. Compute all possible annual slopes between years for that month. There are 10 of these, i.e.,
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3. Repeat this procedure for all months (i.e., for i = 1, 2,…, 12). This gives 120 slopes.
4. Rank these slopes and take the median as the estimate. This is the average value of the 60th and

61st slopes.

                                                     
1 The formula is more complicated if there are multiple data per season (Gilbert 1987:226; IDT Ltd. 1998:89),
but we need not consider that here (the same conclusions emerge if one uses that formula).



Consider the situations (i)-(iii) above (covering all possibilities of obtaining ZsK = 0). If (i) holds, the
estimate is the average of the least negative and the least positive slopes. If these two slopes are equal
in absolute value they will cancel and the estimate will be zero; otherwise it will be non-zero. If (ii)
holds, the estimate must be zero (because the 60th and 61st medians must be zero). If (iii) holds and
there are 3 or more ties, the estimate will be zero: if there is only one tie it will be non-zero.

So for ZsK = 0, a non-zero slope estimate can occur in two cases. These occur when only one of the
two values straddling the median is zero, or when the two values straddling the median are non-zero
and their signs and absolute values are different. Consequently, any such non-zero slope would be the
smallest possible non-zero value, as expected. This result is consistent with the test attaining the
highest possible p-value, but less than 100% (as above).

3. How can a zero estimated trend slope be statistically significant?
Consider a case where there are many ties. For example, analysis of 5 years monthly dissolved
reactive phosphorus data for a site in the New Zealand River Water Quality network (site CH1 on the
Hurunui River, Smith et al. 1996) gave 53 positive slopes, 27 negative slopes, and 40 ties (10 groups
of 2, 8 groups of 3, and 1 group of 4). These ties cause the median slope to be zero (it is straddled by
ties) and Var(S) to be reduced from 200 to 152. The software computed S = 25 and so the test statistic
(equation 1) was |ZsK| = 25/√152 = 2.028. This is statistically significant at the 5% level (being greater
than Zα=0.05/2 = 1.960). Note that if the 40 ties were replaced by an equal number (20) of positive and
negative differences, the test statistic would have been 25/√200 = 1.768 which would not be
significant at the 5 % level.

The problem here is that the slope estimator is not very appropriate in the presence of many ties. It
may be better to take the median of all non-tied values, or perform some other slope estimation
procedure. If there are a large number of ties resulting from replacement of "less-than" data, it may not
be meaningful to seek for trends at all, especially if the detection limit has changed with time.

CALCULATING NORMAL P-VALUES
The p-value for the seasonal Kendall trend test (and many other tests) is obtained from the unit normal
distribution. It is obtained as p = Prob[Z >  ZsK ], where Z is the unit normal deviate with critical
values ± ZsK . An approximate p-value can be found from standard tables. The accurate value (to at
least four digits) can be obtained in a direct calculation by evaluating the complementary error
function—called erfcc in Press et al. (1992). This function is related to the unit normal distribution
function (using equations 7.1.2 & 26.2.29 of Abramowitz & Stegun (1965). The resulting equation is
P(x) = 1 – [erfc(x/√2)]/2, where P(x) is the area under the unit normal distribution to the left of some
value x. Two computer functions are required:

Function ProbN(x)
!Returns the area under the unit normal distribution to the left of any positive
!or negative value x.
y = ABS (x)/SQRT (2.)
t = 1./(1. + 0.5*y)
erfcc = t*exp(-y*y - 1.26551223 + t*(1.00002368 + t*( 0.37409196

+ t*(0.09678418 + t*(-0.18628806 + t*(0.27886807 + t*(-1.13520398
+ t*(1.48851587 + t*(-0.82215223 + t* 0.17087277 )))))))))

If x < 0.0 erfcc = 2. - erfcc
ProbN = 1. – erfcc/2.
End

and

Function p(u)
!Returns p = Prob [Z> ZsK ] where u =  ZsK (u must be non-negative).
p = 1. - (ProbN(u) – ProbN(-u))
end
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